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1 Hypercontractivity II: Applications

1.1 Recap: Bonami’s lemma and forms of hypercontractivity

Last time, we showed Bonami’s lemma.

Lemma 1.1 (Bonami). Let f : {±1}n → R have deg f ≤ k, and let X ∼ {±1}n. Then

E[f(X)4] ≤ 9k(E[f(X)2])2.

We also saw two versions of hypercontractivity:

Theorem 1.1 ((4, 2)-hypercontractivity). For all f : {±1}n → R,

‖T1/√3f‖4 ≤ ‖f‖2.

Theorem 1.2 ((2, 4/3)-hypercontractivity). For all f : {±1}n → R,

‖T1/√3f‖2 ≤ ‖f‖4/3.

Here is a key corollary. Let f : {±1}n → {±1}, and let gi(x) = Dif(x) ∈ {−1, 0, 1}.
Let the 1/3-stability be

Inf
(1/3)
i (f) = Stab1/3(g) =

∑
i∈S

f̂(S)2
(

1

3

)|S|
.

Recall that
Infi(f) =

∑
i∈S

f̂(S)2.

Last time, we showed the following.

Corollary 1.1.

Inf
(1/3)
i ≤ Infi(f)3/2

Informally, if Infi(f) � 1, then most “contribution” to
∑

i∈S f̂(S)2 is from f̂(S) with
large |S|.
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1.2 Friedgut’s theorem

Now we will prove Friedgut’s theorem. Here is the main lemma.

Lemma 1.2. Let f : {±1}n → {±1} and ε > 0. Choose d = 2I(f)/ε, and let J = {i ∈
[n] : Infi(f) ≥ 100−d}. Then f is ε-concentrated on F := {S ⊆ J : |S| ≤ d}.

Proof. Our goal is to show that∑
|S|>d

f̂(S)2 +
∑

|S|:S 6⊆J ,|S|≤d

f̂(S)2 ≤ ε.

We have ∑
|S|:|S|>d

≤ 1

d

∑
S

f̂(S)2|S|

≤ 1

d
I(f)

≤ ε/2.

It now remains to bound the second summation.∑
|S|:S 6⊆J ,|S|≤d

f̂(S)2 ≤
∑

S 6⊆J ,|S|≤d

f̂(S)2|S ∩ J |

We want to use our key corollary from last lecture.

=
∑
|S|≤d

f̂(S)23|S| ·
(

1

3

)|S|
|S ∩ J |

≤ 3d
∑

S 6⊆J ,|S|≤d

f̂(S)2
(

1

3

)|S|
|S ∩ J |

≤ 3d
∑
i∈J

∑
S3i

f̂(S)2
(

1

3

)|S|
≤ 3d

∑
i∈J

Inf
(1/3)
i (f)

Using our key corollary,

≤ 3d
∑
i∈J

Infi(f)3/2︸ ︷︷ ︸
=Infi(f)

√
Infi(f)3/2

≤
(

3

10

)d∑
i∈J

Infi(f)
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≤
(

3

10

)d

I(f)

≤ ε/2.

Theorem 1.3 (Friedgut). Any function f : {±1}n → {±1} is ε-close to a 2O(I(f)/ε)-junta.

Proof. Take J from the main lemma, and let

g(s)L =

∑
S⊆J

f̂(S)χS(x)

 .

We know that

|J | ≤ I(f)

100−d
≤ I(f)2O(I(f)/ε) ≤ 2O(I(f)/ε).

Then f is also ε-concentrated on {S ⊆ J}: To check that g is a good approximation to f ,
we have

PX∼Un(f(X) 6= g(X)) ≤ EX

∣∣∣∣∣∣f(X)−
∑
S⊆J

f̂(S)χS(x)

∣∣∣∣∣∣


=
∑

S:S 6⊆J
f̂(S)2

≤ ε.

Corollary 1.2. A width w CNF or DNF is ε-close to a 2O(w/ε)-junta.

Remark 1.1. The junta in Friedgut’s theorem can be a restriction of f ; if f : {±1}n →
{pm1} and we let J be such that

∑
S⊆J f̂(S)2 ≥ 1 − ε, then there exists a restriction

(J , z) is ε-close to f .

Proof. Choose Z ∼ {±1}J . For each S,

EZ [f̂ |J,Z(S)] =

{
0 S 6⊆J

f̂(S) otherwise.

Then

EZ∼{±1}J [〈f, f |J ,Z〉] = EZ∼{±1}J [〈f̂ , f̂ |J ,Z〉]

=
∑
S⊆[n]

f̂(S)EZ [f̂ |J ,Z(S)]

=
∑
S⊆J

f̂(S)2
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≥ 1− ε.

In particular, there must exist some z such that

1− ε ≤ 〈f, f |J,z〉 = 1− 2PX∼Un(f(X) 6= f |J,z(X)).

Rearranging, we get
PX∼Un(f(X) 6= f |J,z(X)) ≤ ε/2.

1.3 The KKL theorem

Theorem 1.4 (Kahn-Kalai-Linial). Let f : {±1}n → {±1}. Then

Max Inf(f) ≥ Ω(Var(f) lognn ).

Proof. Let ε = Var(f)/10. We consider two cases:

1. If I(f) ≥ Var(f) logn1000 , then Max Inf(f) ≥ Var(f) logn
1000n .

2. If I(f) < Var(f) logn1000 , then I(f)/ε ≤ logn
100 . Using our main lemma, there exists a set

J such that

|J | ≤ 1002I(f)/εI(f) ≤ 1002 logn/100I(f) ≤ 100logn/50 log n ≤
√
n

Then ∑
j∈J

Infj(f) =
∑
j∈J

∑
S3j

f̂(S)2

≥
∑

S⊆J ,|S|≥1

f̂(S)2

≥
∑
|S|≥1

f̂(S)2 −
∑
S⊆J

f̂(S)2

≥ Var(f)− ε

≥ 9

10
Var(f).

So there exists some j ∈ J such that

Infj(f) ≥ Ω

(
Var(f)

|J |

)
≥ Ω

(
Var(f)√

n

)
≥ Ω

(
Var(f) log n

n

)
.

Here is an application in social choice theory.
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Corollary 1.3. Let f : {±1}n → {±1} be monotone, and suppose that EX∼Un [f(X)] ≥
−0.99. Then there exists a subset J of size at most O(n/ log n) such that if all j ∈ J are
“bribed to vote +1”, then the outcome becomes +1 with high probability:

E
X∼{±1}J [f(X) | ∀j ∈ J , Xj = +1] ≥ 0.99.

Proof sketch. We construct J by a greedy strategy: Let f0 := f , so E[f0] ≥ −0.99. If
E[f0] ≥ 0.99, we are done; otherwise, we know that E[f0] ∈ (−0.99,+0.99). Then Var(f0) =
1− (E[f0])

2 ≥ Ω(1). By KKL, there exists an index j1 ∈ [n] such that Infj1(f) ≥ Ω log n/n.

Now include j1 in our set J , and let f1 := f j 7→+1
0 . Then

E[f1] ≥ E[f0] + Infj1(f0) ≥ E[f0] + Ω( lognn ).

Now if E[f1] ≥ 0.99, we stop. Otherwise, we repeat.
This process stops at ft, where

1 ≥ E[ft] ≥ E[f0] + Ω( t lognn ),

so we only need to do this process for O(n/ log n) iterations.

1.4 The FKN theorem

Theorem 1.5 (Friedgut-Kalai-Naor). If f : {±1}n → {±1} has W=1(f) ≥ 1 − ε, then f
is O(ε)-close to a dictator/antidictator.

Remark 1.2. Another version of this theorem says that if W≤1(f) ≥ 1 − ε, then f is
O(ε)-close to a 1-junta.

Proof. We linearize the function f : Let `(x) = f=1(x). We may assume without loss of
generality that W=1 = 1− ε. Then

E[`(X)2] =

n∑
i=1

f̂({i})2 = 1− ε.

Then

`(x)2 =

(∑
i

f̂({i})xi

)2

=
n∑

i=1

n∑
j=1

f̂({i})f̂({j})xixj

=
n∑

i=1

f̂({i})2 + 2
∑

1≤i<j≤n
f̂(i)f̂(j)xixj .
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We want to bound the variance of `(x)2, as it suffices to show that Var(`(X)2) ≤ O(ε).
This is because we would get the lower bound

∑n
i=1 f̂({i})4 ≥ 1−O(ε) because

1−O(ε) ≤

(
n∑

i=1

f̂(i)2

)2

=
n∑

i=1

f̂({i})4 + 2
∑
i 6=j

f̂({i})2f̂({j})2.

This implies that

max
i
f̂({i})2 ·

∑
j

f̂({j})2 ≥
∑
i

f̂({i})4 ≥ 1−O(ε).

Now we bound the variance. We will use our anticoncentration bound:

PX∼Un(|`(X)2 − (1− ε)| ≥ 1
2

√
Var(`2)) ≥

(1− (12)2)2

92
≥ 1

144
.

If Var(`(X)2) > 6400ε, then

P(|`(X)2 − 1| ≥ 39
√
ε) ≥ 1

144
.

As a consequence, since |`(X)2 − 1| ≥ 39
√
ε implies (`(X)2f(X))2 ≥ 39

√
ε,

P((`(X)2f(X))2 ≥ 39
√
ε) ≥ 1

144
· 169ε > ε.
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