Computer Science 294 Lecture 18 Notes

Daniel Raban
March 16, 2023

1 Hypercontractivity II: Applications

1.1 Recap: Bonami's lemma and forms of hypercontractivity

Last time, we showed Bonami's lemma.
Lemma 1.1 (Bonami). Let $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ have $\operatorname{deg} f \leq k$, and let $X \sim\{ \pm 1\}^{n}$. Then

$$
\mathbb{E}\left[f(X)^{4}\right] \leq 9^{k}\left(\mathbb{E}\left[f(X)^{2}\right]\right)^{2} .
$$

We also saw two versions of hypercontractivity:
Theorem 1.1 ((4,2)-hypercontractivity). For all $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$,

$$
\left\|T_{1 / \sqrt{3}} f\right\|_{4} \leq\|f\|_{2} .
$$

Theorem 1.2 ((2,4/3)-hypercontractivity). For all $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$,

$$
\left\|T_{1 / \sqrt{3}} f\right\|_{2} \leq\|f\|_{4 / 3} .
$$

Here is a key corollary. Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$, and let $g_{i}(x)=D_{i} f(x) \in\{-1,0,1\}$. Let the $1 / 3$-stability be

$$
\operatorname{Inf}_{i}^{(1 / 3)}(f)=\operatorname{Stab}_{1 / 3}(g)=\sum_{i \in S} \widehat{f}(S)^{2}\left(\frac{1}{3}\right)^{|S|}
$$

Recall that

$$
\operatorname{Inf}_{i}(f)=\sum_{i \in S} \widehat{f}(S)^{2}
$$

Last time, we showed the following.
Corollary 1.1.

$$
\operatorname{Inf}_{i}^{(1 / 3)} \leq \operatorname{Inf}_{i}(f)^{3 / 2}
$$

Informally, if $\operatorname{Inf}_{i}(f) \ll 1$, then most "contribution" to $\sum_{i \in S} \widehat{f}(S)^{2}$ is from $\widehat{f}(S)$ with large $|S|$.

1.2 Friedgut's theorem

Now we will prove Friedgut's theorem. Here is the main lemma.
Lemma 1.2. Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and $\varepsilon>0$. Choose $d=2 \mathbb{I}(f) / \varepsilon$, and let $\mathcal{J}=\{i \in$ $\left.[n]: \operatorname{Inf}_{i}(f) \geq 100^{-d}\right\}$. Then f is ε-concentrated on $\mathcal{F}:=\{S \subseteq \mathcal{J}:|S| \leq d\}$.

Proof. Our goal is to show that

$$
\sum_{|S|>d} \widehat{f}(S)^{2}+\sum_{|S|: S \not \subset \mathcal{J},|S| \leq d} \widehat{f}(S)^{2} \leq \varepsilon .
$$

We have

$$
\begin{aligned}
\sum_{|S|:|S|>d} & \leq \frac{1}{d} \sum_{S} \widehat{f}(S)^{2}|S| \\
& \leq \frac{1}{d} \mathbb{I}(f) \\
& \leq \varepsilon / 2
\end{aligned}
$$

It now remains to bound the second summation.

$$
\sum_{|S|: S \notin \mathcal{J},|S| \leq d} \widehat{f}(S)^{2} \leq \sum_{S \not \subset \mathcal{J},|S| \leq d} \widehat{f}(S)^{2}|S \cap \overline{\mathcal{J}}|
$$

We want to use our key corollary from last lecture.

$$
\begin{aligned}
& =\sum_{|S| \leq d} \widehat{f}(S)^{2} 3^{|S|} \cdot\left(\frac{1}{3}\right)^{|S|}|S \cap \bar{J}| \\
& \leq 3^{d} \sum_{S \not \subset \mathcal{J},|S| \leq d} \widehat{f}(S)^{2}\left(\frac{1}{3}\right)^{|S|}|S \cap \bar{J}| \\
& \leq 3^{d} \sum_{i \in \overline{\mathcal{J}}} \sum_{S \ni i} \widehat{f}(S)^{2}\left(\frac{1}{3}\right)^{|S|} \\
& \leq 3^{d} \sum_{i \in \overline{\mathcal{J}}} \operatorname{Inf}_{i}^{1 / 3)}(f)
\end{aligned}
$$

Using our key corollary,

$$
\begin{aligned}
& \leq 3^{d} \sum_{i \in \overline{\mathcal{J}}} \underbrace{\operatorname{Inf}_{i}(f)^{3 / 2}}_{=\operatorname{Inf}_{i}(f) \sqrt{\operatorname{Inf}_{i}(f)^{3 / 2}}} \\
& \leq\left(\frac{3}{10}\right)^{d} \sum_{i \in \overline{\mathcal{J}}} \operatorname{Inf}_{i}(f)
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\frac{3}{10}\right)^{d} \mathbb{I}(f) \\
& \leq \varepsilon / 2
\end{aligned}
$$

Theorem 1.3 (Friedgut). Any function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is ε-close to a $2^{O(\mathbb{I}(f) / \varepsilon)}$-junta.
Proof. Take \mathcal{J} from the main lemma, and let

$$
g(s) L=\left(\sum_{S \subseteq \mathcal{J}} \widehat{f}(S) \chi_{S}(x)\right) .
$$

We know that

$$
|\mathcal{J}| \leq \frac{\mathbb{I}(f)}{100^{-d}} \leq \mathbb{I}(f) 2^{O(\mathbb{I}(f) / \varepsilon)} \leq 2^{O(\mathbb{I}(f) / \varepsilon)}
$$

Then f is also ε-concentrated on $\{S \subseteq \mathcal{J}\}$: To check that g is a good approximation to f, we have

$$
\begin{aligned}
\mathbb{P}_{X \sim U_{n}}(f(X) \neq g(X)) & \leq \mathbb{E}_{X}\left[\left|f(X)-\sum_{S \subseteq \mathcal{J}} \widehat{f}(S) \chi_{S}(x)\right|\right] \\
& =\sum_{S: S \notin \mathcal{J}} \widehat{f}(S)^{2} \\
& \leq \varepsilon .
\end{aligned}
$$

Corollary 1.2. A width $w C N F$ or DNF is ε-close to a $2^{O(w / \varepsilon)}-j u n t a$.
Remark 1.1. The junta in Friedgut's theorem can be a restriction of f; if $f:\{ \pm 1\}^{n} \rightarrow$ $\{p m 1\}$ and we let \mathscr{J} be such that $\sum_{S \subseteq \mathscr{J}} \widehat{f}(S)^{2} \geq 1-\varepsilon$, then there exists a restriction (\mathscr{J}, z) is ε-close to f.

Proof. Choose $Z \sim\{ \pm 1\}^{\overline{\mathcal{J}}}$. For each S,

$$
\mathbb{E}_{Z}\left[\widehat{\left.f\right|_{J, Z}}(S)\right]= \begin{cases}0 & S \nsubseteq \mathscr{J} \\ \widehat{f}(S) & \text { otherwise }\end{cases}
$$

Then

$$
\begin{aligned}
\mathbb{E}_{Z \sim\{ \pm 1\}^{\mathcal{J}}}\left[\left\langle f,\left.f\right|_{\mathcal{J}, Z}\right\rangle\right] & =\mathbb{E}_{Z \sim\{ \pm 1\}^{\mathcal{J}}}\left[\left\langle\widehat{f}, \widehat{\left.f\right|_{\mathcal{J}, Z}}\right\rangle\right] \\
& =\sum_{S \subseteq[n]} \widehat{f}(S) \mathbb{E}_{Z}\left[\widehat{\left.f\right|_{\mathcal{J}, Z}}(S)\right] \\
& =\sum_{S \subseteq \mathcal{J}} \widehat{f}(S)^{2}
\end{aligned}
$$

$$
\geq 1-\varepsilon .
$$

In particular, there must exist some z such that

$$
1-\varepsilon \leq\left\langle f,\left.f\right|_{J, z}\right\rangle=1-2 \mathbb{P}_{X \sim U_{n}}\left(f(X) \neq\left. f\right|_{J, z}(X)\right) .
$$

Rearranging, we get

$$
\mathbb{P}_{X \sim U_{n}}\left(f(X) \neq\left. f\right|_{J, z}(X)\right) \leq \varepsilon / 2 .
$$

1.3 The KKL theorem

Theorem 1.4 (Kahn-Kalai-Linial). Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$. Then

$$
\operatorname{Max} \operatorname{Inf}(f) \geq \Omega\left(\operatorname{Var}(f) \frac{\log n}{n}\right) .
$$

Proof. Let $\varepsilon=\operatorname{Var}(f) / 10$. We consider two cases:

1. If $\mathbb{I}(f) \geq \operatorname{Var}(f) \frac{\log n}{1000}$, then $\operatorname{Max} \operatorname{Inf}(f) \geq \operatorname{Var}(f) \frac{\log n}{1000 n}$.
2. If $\mathbb{I}(f)<\operatorname{Var}(f) \frac{\log n}{1000}$, then $\mathbb{I}(f) / \varepsilon \leq \frac{\log n}{100}$. Using our main lemma, there exists a set \mathcal{J} such that

$$
|\mathcal{J}| \leq 100^{2 \mathbb{I}(f) / \varepsilon} \mathbb{I}(f) \leq 100^{2 \log n / 100} \mathbb{I}(f) \leq 100^{\log n / 50} \log n \leq \sqrt{n}
$$

Then

$$
\begin{aligned}
\sum_{j \in \mathcal{J}} \operatorname{Inf}_{j}(f) & =\sum_{j \in \mathcal{J}} \sum_{S \ni j} \widehat{f}(S)^{2} \\
& \geq \sum_{S \subseteq \mathcal{J},|S| \geq 1} \widehat{f}(S)^{2} \\
& \geq \sum_{|S| \geq 1} \widehat{f}(S)^{2}-\sum_{S \subseteq \mathcal{J}} \widehat{f}(S)^{2} \\
& \geq \operatorname{Var}(f)-\varepsilon \\
& \geq \frac{9}{10} \operatorname{Var}(f) .
\end{aligned}
$$

So there exists some $j \in \mathcal{J}$ such that

$$
\operatorname{Inf}_{j}(f) \geq \Omega\left(\frac{\operatorname{Var}(f)}{|\mathcal{J}|}\right) \geq \Omega\left(\frac{\operatorname{Var}(f)}{\sqrt{n}}\right) \geq \Omega\left(\frac{\operatorname{Var}(f) \log n}{n}\right)
$$

Here is an application in social choice theory.

Corollary 1.3. Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ be monotone, and suppose that $\mathbb{E}_{X \sim U_{n}}[f(X)] \geq$ -0.99 . Then there exists a subset \mathcal{J} of size at most $O(n / \log n)$ such that if all $j \in \mathcal{J}$ are "bribed to vote +1 ", then the outcome becomes +1 with high probability:

$$
\mathbb{E}_{X \sim\{ \pm 1\} \overline{\mathcal{J}}}\left[f(X) \mid \forall j \in \mathcal{J}, X_{j}=+1\right] \geq 0.99 .
$$

Proof sketch. We construct \mathcal{J} by a greedy strategy: Let $f_{0}:=f$, so $\mathbb{E}\left[f_{0}\right] \geq-0.99$. If $\mathbb{E}\left[f_{0}\right] \geq 0.99$, we are done; otherwise, we know that $\mathbb{E}\left[f_{0}\right] \in(-0.99,+0.99)$. Then $\operatorname{Var}\left(f_{0}\right)=$ $1-\left(\mathbb{E}\left[f_{0}\right]\right)^{2} \geq \Omega(1)$. By KKL, there exists an index $j_{1} \in[n]$ such that $\operatorname{Inf}_{j_{1}}(f) \geq \Omega \log n / n$. Now include j_{1} in our set \mathcal{J}, and let $f_{1}:=f_{0}^{j \mapsto+1}$. Then

$$
\mathbb{E}\left[f_{1}\right] \geq \mathbb{E}\left[f_{0}\right]+\operatorname{Inf}_{j_{1}}\left(f_{0}\right) \geq \mathbb{E}\left[f_{0}\right]+\Omega\left(\frac{\log n}{n}\right) .
$$

Now if $\mathbb{E}\left[f_{1}\right] \geq 0.99$, we stop. Otherwise, we repeat.
This process stops at f_{t}, where

$$
1 \geq \mathbb{E}\left[f_{t}\right] \geq \mathbb{E}\left[f_{0}\right]+\Omega\left(\frac{t \log n}{n}\right),
$$

so we only need to do this process for $O(n / \log n)$ iterations.

1.4 The FKN theorem

Theorem 1.5 (Friedgut-Kalai-Naor). If $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has $W^{=1}(f) \geq 1-\varepsilon$, then f is $O(\varepsilon)$-close to a dictator/antidictator.

Remark 1.2. Another version of this theorem says that if $W^{\leq 1}(f) \geq 1-\varepsilon$, then f is $O(\varepsilon)$-close to a 1 -junta.

Proof. We linearize the function f : Let $\ell(x)=f^{=1}(x)$. We may assume without loss of generality that $W^{=1}=1-\varepsilon$. Then

$$
\mathbb{E}\left[\ell(X)^{2}\right]=\sum_{i=1}^{n} \widehat{f}(\{i\})^{2}=1-\varepsilon .
$$

Then

$$
\begin{aligned}
\ell(x)^{2} & =\left(\sum_{i} \widehat{f}(\{i\}) x_{i}\right)^{2} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \widehat{f}(\{i\}) \widehat{f}(\{j\}) x_{i} x_{j} \\
& =\sum_{i=1}^{n} \widehat{f}(\{i\})^{2}+2 \sum_{1 \leq i<j \leq n} \widehat{f}(i) \widehat{f}(j) x_{i} x_{j} .
\end{aligned}
$$

We want to bound the variance of $\ell(x)^{2}$, as it suffices to show that $\operatorname{Var}\left(\ell(X)^{2}\right) \leq O(\varepsilon)$. This is because we would get the lower bound $\sum_{i=1}^{n} \widehat{f}(\{i\})^{4} \geq 1-O(\varepsilon)$ because

$$
1-O(\varepsilon) \leq\left(\sum_{i=1}^{n} \widehat{f}(i)^{2}\right)^{2}=\sum_{i=1}^{n} \widehat{f}(\{i\})^{4}+2 \sum_{i \neq j} \widehat{f}(\{i\})^{2} \widehat{f}(\{j\})^{2} .
$$

This implies that

$$
\max _{i} \widehat{f}(\{i\})^{2} \cdot \sum_{j} \widehat{f}(\{j\})^{2} \geq \sum_{i} \widehat{f}(\{i\})^{4} \geq 1-O(\varepsilon) .
$$

Now we bound the variance. We will use our anticoncentration bound:

$$
\mathbb{P}_{X \sim U_{n}}\left(\left|\ell(X)^{2}-(1-\varepsilon)\right| \geq \frac{1}{2} \sqrt{\operatorname{Var}\left(\ell^{2}\right)}\right) \geq \frac{\left(1-\left(\frac{1}{2}\right)^{2}\right)^{2}}{9^{2}} \geq \frac{1}{144} .
$$

If $\operatorname{Var}\left(\ell(X)^{2}\right)>6400 \varepsilon$, then

$$
\mathbb{P}\left(\left|\ell(X)^{2}-1\right| \geq 39 \sqrt{\varepsilon}\right) \geq \frac{1}{144}
$$

As a consequence, since $\left|\ell(X)^{2}-1\right| \geq 39 \sqrt{\varepsilon}$ implies $\left(\ell(X)^{2} f(X)\right)^{2} \geq 39 \sqrt{\varepsilon}$,

$$
\mathbb{P}\left(\left(\ell(X)^{2} f(X)\right)^{2} \geq 39 \sqrt{\varepsilon}\right) \geq \frac{1}{144} \cdot 169 \varepsilon>\varepsilon
$$

