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1 Hypercontractivity II: Applications

1.1 Recap: Bonami’s lemma and forms of hypercontractivity
Last time, we showed Bonami’s lemma.
Lemma 1.1 (Bonami). Let f: {£1}" — R have deg f < k, and let X ~ {£1}". Then
E[f(X)"] < 9*(E[f(X)*)*.
We also saw two versions of hypercontractivity:

Theorem 1.1 ((4,2)-hypercontractivity). For all f: {+1}" — R,

1Ty 5/ lla < N1 £1]2-
Theorem 1.2 ((2,4/3)-hypercontractivity). For all f: {£1}" — R,

Iy fll2 < 11 s

Here is a key corollary. Let f : {£1}" — {£1}, and let g;(x) = D;f(x) € {-1,0,1}.
Let the 1/3-stability be
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Recall that R
Inf;(f) = > F(S)*.
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Last time, we showed the following.

Corollary 1.1.
Inf"® < Inf;(£)3/2

Informally, if Inf;(f) < 1, then most “contribution” to >, ¢ F(8)? is from f(S) with
large |S|.



1.2 Friedgut’s theorem

Now we will prove Friedgut’s theorem. Here is the main lemma.

Lemma 1.2. Let f : {+1}" — {£1} and € > 0. Choose d = 2I(f)/e, and let J = {i €
[n] : Inf;(f) > 100~} Then f is e-concentrated on F :={S C J : |S| < d}.

Proof. Our goal is to show that
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We have

It now remains to bound the second summation.
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We want to use our key corollary from last lecture.
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Using our key corollary,
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Theorem 1.3 (Friedgut). Any function f : {+1}" — {£1} is e-close to a 200)/%) junta,
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Proof. Take J from the main lemma, and let
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We know that

I(f) O(I(f)/e) O(I(f)/e)
< <I(f)2 <2 .
7| < To0d = (f) S

we have

£ = 3 F(S)xs(@)

Then f is also e-concentrated on {S C J}: To check that g is a good approximation to f,
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Px~u, (f(X) # 9(X)) <Ex [

Corollary 1.2. A width w CNF or DNF is e-close to a 2°0(*/%) _junta.

Remark 1.1. The junta in Friedgut’s theorem can be a restriction of f; if f: {£1}" —
{pm1} and we let ¢ be such that 232/ f(S)? > 1 — ¢, then there exists a restriction

(7, =) is e-close to f.

Proof. Choose Z ~ {#+1}. For each S,

Ez[f152(9)] = {%(5) ftl%e;ise.

Then
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In particular, there must exist some z such that

L—e<(f, flrz) =1 =2Px~u, (f(X) # fls.(X)).

Rearranging, we get
Px~u, (f(X) # fls2(X)) < /2. O

1.3 The KKL theorem
Theorem 1.4 (Kahn-Kalai-Linial). Let f: {£1}"™ — {£1}. Then

Maz Inf(f) > Q(Var(f)<&").

n

Proof. Let € = Var(f)/10. We consider two cases:

1. IfI(f) > Var(f)lloo%, then Max Inf(f) > Var(f) 11865)07;.

2. If I(f) < Var(f) lloogog, then I(f)/e < kl’%g. Using our main lemma, there exists a set
J such that

‘j‘ < 1002]I(f)/8]1(f) < 100210gn/100]1(f) < 10010gn/50 logn < \/ﬁ

Then

So there exists some j € J such that

w20 (58) 0 (0 s (k)

Here is an application in social choice theory.



Corollary 1.3. Let f : {£1}" — {£1} be monotone, and suppose that Ex .y, [f(X)] >
—0.99. Then there exists a subset J of size at most O(n/logn) such that if all j € J are
“bribed to vote +17, then the outcome becomes +1 with high probability:

Ex o7 [f(X) Vi €T, X; =+1] = 0.99.

Proof sketch. We construct J by a greedy strategy: Let fo := f, so E[fo] > —0.99. If
E[fo] > 0.99, we are done; otherwise, we know that E[fy] € (—0.99,+0.99). Then Var(fy) =

—(E[fo])? > Q(1). By KKL, there exists an index j; € [n] such that Inf;, (f) > Qlogn/n.
Now include j; in our set J, and let f; := ]HH Then

E[f1] > E[fo] + Inf;, (fo) > E[fo] + Q(*%&2).

Now if E[f1] > 0.99, we stop. Otherwise, we repeat.
This process stops at f;, where

1> E[f,] > E[fo] + Q(H%&"),

so we only need to do this process for O(n/logn) iterations. O

1.4 The FKN theorem

Theorem 1.5 (Friedgut-Kalai-Naor). If f : {£1}" — {£1} has W=L(f) > 1 —¢, then f
is O(e)-close to a dictator/antidictator.

Remark 1.2. Another version of this theorem says that if W=S(f) > 1 — ¢, then f is
O(e)-close to a 1-junta.

Proof. We linearize the function f: Let ¢(z) = f=!(x). We may assume without loss of
generality that W= =1 — . Then

Then
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We want to bound the variance of £(x)?, as it suffices to show that Var(¢(X)?) < O(e).
This is because we would get the lower bound Y | f({i})* > 1 — O(e) because

s)<<§:f(z‘)2> =Zf({z 2 T D

i#j
This implies that

max f({i})? Zf{y} >Zf{z >1-0(e).

Now we bound the variance. We will use our anticoncentration bound:

(-2 1
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Pty (0X)? = (1= )| 2 $v/Var(@)) = 2 = oo

If Var(¢(X)?) > 6400¢, then

1
P(e(X) —1]=239ve) > .

As a consequence, since [¢(X)2 — 1| > 39/ implies (£(X)?f(X))? > 39+/¢,

P((L(X)2f(X))% > 39¢/2) > ﬁ 169 > . O
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