Computer Science 294 Lecture 18 Notes

Daniel Raban

March 16, 2023

1 Hypercontractivity II: Applications

1.1 Recap: Bonami's lemma and forms of hypercontractivity

Last time, we showed Bonami's lemma.

Lemma 1.1 (Bonami). Let $f : \{\pm 1\}^n \to \mathbb{R}$ have deg $f \leq k$, and let $X \sim \{\pm 1\}^n$. Then $\mathbb{E}[f(X)^4] \leq 9^k (\mathbb{E}[f(X)^2])^2$.

We also saw two versions of hypercontractivity:

Theorem 1.1 ((4,2)-hypercontractivity). For all $f : \{\pm 1\}^n \to \mathbb{R}$,

$$||T_{1/\sqrt{3}}f||_4 \le ||f||_2.$$

Theorem 1.2 ((2,4/3)-hypercontractivity). For all $f : \{\pm 1\}^n \to \mathbb{R}$,

$$||T_{1/\sqrt{3}}f||_2 \le ||f||_{4/3}.$$

Here is a key corollary. Let $f : \{\pm 1\}^n \to \{\pm 1\}$, and let $g_i(x) = D_i f(x) \in \{-1, 0, 1\}$. Let the 1/3-stability be

$$\mathrm{Inf}_{i}^{(1/3)}(f) = \mathrm{Stab}_{1/3}(g) = \sum_{i \in S} \widehat{f}(S)^{2} \left(\frac{1}{3}\right)^{|S|}.$$

Recall that

$$\operatorname{Inf}_i(f) = \sum_{i \in S} \widehat{f}(S)^2.$$

Last time, we showed the following.

Corollary 1.1.

$$\operatorname{Inf}_{i}^{(1/3)} \le \operatorname{Inf}_{i}(f)^{3/2}$$

Informally, if $\operatorname{Inf}_i(f) \ll 1$, then most "contribution" to $\sum_{i \in S} \widehat{f}(S)^2$ is from $\widehat{f}(S)$ with large |S|.

1.2 Friedgut's theorem

Now we will prove Friedgut's theorem. Here is the main lemma.

Lemma 1.2. Let $f : \{\pm 1\}^n \to \{\pm 1\}$ and $\varepsilon > 0$. Choose $d = 2\mathbb{I}(f)/\varepsilon$, and let $\mathcal{J} = \{i \in [n] : \operatorname{Inf}_i(f) \ge 100^{-d}\}$. Then f is ε -concentrated on $\mathcal{F} := \{S \subseteq \mathcal{J} : |S| \le d\}$.

Proof. Our goal is to show that

$$\sum_{|S|>d} \widehat{f}(S)^2 + \sum_{|S|:S \not\subseteq \mathcal{J}, |S| \le d} \widehat{f}(S)^2 \le \varepsilon.$$

We have

$$\sum_{|S|:|S|>d} \leq \frac{1}{d} \sum_{S} \widehat{f}(S)^2 |S|$$
$$\leq \frac{1}{d} \mathbb{I}(f)$$
$$\leq \varepsilon/2.$$

It now remains to bound the second summation.

$$\sum_{|S|:S \not\subseteq \mathcal{J}, |S| \le d} \widehat{f}(S)^2 \le \sum_{S \not\subseteq \mathcal{J}, |S| \le d} \widehat{f}(S)^2 |S \cap \overline{\mathcal{J}}|$$

We want to use our key corollary from last lecture.

$$\begin{split} &= \sum_{|S| \le d} \widehat{f}(S)^2 3^{|S|} \cdot \left(\frac{1}{3}\right)^{|S|} |S \cap \overline{J}| \\ &\le 3^d \sum_{S \not\subseteq \mathcal{J}, |S| \le d} \widehat{f}(S)^2 \left(\frac{1}{3}\right)^{|S|} |S \cap \overline{J}| \\ &\le 3^d \sum_{i \in \overline{\mathcal{J}}} \sum_{S \ni i} \widehat{f}(S)^2 \left(\frac{1}{3}\right)^{|S|} \\ &\le 3^d \sum_{i \in \overline{\mathcal{J}}} \operatorname{Inf}_i^{(1/3)}(f) \end{split}$$

Using our key corollary,

$$\leq 3^d \sum_{i \in \overline{\mathcal{J}}} \underbrace{\operatorname{Inf}_i(f)^{3/2}}_{=\operatorname{Inf}_i(f)\sqrt{\operatorname{Inf}_i(f)^{3/2}}} \\ \leq \left(\frac{3}{10}\right)^d \sum_{i \in \overline{\mathcal{J}}} \operatorname{Inf}_i(f)$$

$$\leq \left(\frac{3}{10}\right)^d \mathbb{I}(f)$$

$$\leq \varepsilon/2.$$

Theorem 1.3 (Friedgut). Any function $f : \{\pm 1\}^n \to \{\pm 1\}$ is ε -close to a $2^{O(\mathbb{I}(f)/\varepsilon)}$ -junta. Proof. Take \mathcal{J} from the main lemma, and let

$$g(s)L = \left(\sum_{S \subseteq \mathcal{J}} \widehat{f}(S)\chi_S(x)\right).$$

We know that

$$|\mathcal{J}| \le \frac{\mathbb{I}(f)}{100^{-d}} \le \mathbb{I}(f) 2^{O(\mathbb{I}(f)/\varepsilon)} \le 2^{O(\mathbb{I}(f)/\varepsilon)}$$

Then f is also ε -concentrated on $\{S \subseteq \mathcal{J}\}$: To check that g is a good approximation to f, we have

$$\mathbb{P}_{X \sim U_n}(f(X) \neq g(X)) \leq \mathbb{E}_X \left[\left| f(X) - \sum_{S \subseteq \mathcal{J}} \widehat{f}(S) \chi_S(x) \right| \right]$$
$$= \sum_{S:S \not\subseteq \mathcal{J}} \widehat{f}(S)^2$$
$$\leq \varepsilon.$$

Corollary 1.2. A width w CNF or DNF is ε -close to a $2^{O(w/\varepsilon)}$ -junta.

Remark 1.1. The junta in Friedgut's theorem can be a *restriction* of f; if $f : \{\pm 1\}^n \to \{pm1\}$ and we let \mathscr{J} be such that $\sum_{S \subseteq \mathscr{J}} \widehat{f}(S)^2 \ge 1 - \varepsilon$, then there exists a restriction (\mathscr{J}, z) is ε -close to f.

Proof. Choose $Z \sim \{\pm 1\}^{\overline{\mathcal{J}}}$. For each S,

$$\mathbb{E}_{Z}[\widehat{f|_{J,Z}}(S)] = \begin{cases} 0 & S \not\subseteq \mathscr{J} \\ \widehat{f}(S) & \text{otherwise.} \end{cases}$$

Then

$$\mathbb{E}_{Z \sim \{\pm 1\}^{\mathcal{J}}}[\langle f, f |_{\mathcal{J}, Z} \rangle] = \mathbb{E}_{Z \sim \{\pm 1\}^{\mathcal{J}}}[\langle \widehat{f}, \widehat{f} |_{\mathcal{J}, Z} \rangle]$$
$$= \sum_{S \subseteq [n]} \widehat{f}(S) \mathbb{E}_{Z}[\widehat{f} |_{\mathcal{J}, Z}(S)]$$
$$= \sum_{S \subseteq \mathcal{J}} \widehat{f}(S)^{2}$$

 $\geq 1-\varepsilon.$

In particular, there must exist some z such that

$$1 - \varepsilon \le \langle f, f|_{J,z} \rangle = 1 - 2\mathbb{P}_{X \sim U_n}(f(X) \neq f|_{J,z}(X)).$$

Rearranging, we get

$$\mathbb{P}_{X \sim U_n}(f(X) \neq f|_{J,z}(X)) \leq \varepsilon/2.$$

1.3 The KKL theorem

Theorem 1.4 (Kahn-Kalai-Linial). Let $f : \{\pm 1\}^n \to \{\pm 1\}$. Then

$$Max Inf(f) \ge \Omega(\operatorname{Var}(f)\frac{\log n}{n}).$$

Proof. Let $\varepsilon = \operatorname{Var}(f)/10$. We consider two cases:

- 1. If $\mathbb{I}(f) \ge \operatorname{Var}(f) \frac{\log n}{1000}$, then Max $\operatorname{Inf}(f) \ge \operatorname{Var}(f) \frac{\log n}{1000n}$.
- 2. If $\mathbb{I}(f) < \operatorname{Var}(f) \frac{\log n}{1000}$, then $\mathbb{I}(f)/\varepsilon \leq \frac{\log n}{100}$. Using our main lemma, there exists a set \mathcal{J} such that

$$|\mathcal{J}| \leq 100^{2\mathbb{I}(f)/\varepsilon} \mathbb{I}(f) \leq 100^{2\log n/100} \mathbb{I}(f) \leq 100^{\log n/50} \log n \leq \sqrt{n}$$

Then

$$\begin{split} \sum_{j \in \mathcal{J}} \mathrm{Inf}_{j}(f) &= \sum_{j \in \mathcal{J}} \sum_{S \ni j} \widehat{f}(S)^{2} \\ &\geq \sum_{S \subseteq \mathscr{J}, |S| \ge 1} \widehat{f}(S)^{2} \\ &\geq \sum_{|S| \ge 1} \widehat{f}(S)^{2} - \sum_{S \subseteq \mathcal{J}} \widehat{f}(S)^{2} \\ &\geq \mathrm{Var}(f) - \varepsilon \\ &\geq \frac{9}{10} \mathrm{Var}(f). \end{split}$$

So there exists some $j \in \mathcal{J}$ such that

$$\operatorname{Inf}_{j}(f) \geq \Omega\left(\frac{\operatorname{Var}(f)}{|\mathcal{J}|}\right) \geq \Omega\left(\frac{\operatorname{Var}(f)}{\sqrt{n}}\right) \geq \Omega\left(\frac{\operatorname{Var}(f)\log n}{n}\right).$$

Here is an application in social choice theory.

Corollary 1.3. Let $f : \{\pm 1\}^n \to \{\pm 1\}$ be monotone, and suppose that $\mathbb{E}_{X \sim U_n}[f(X)] \ge -0.99$. Then there exists a subset \mathcal{J} of size at most $O(n/\log n)$ such that if all $j \in \mathcal{J}$ are "bribed to vote +1", then the outcome becomes +1 with high probability:

$$\mathbb{E}_{X \sim \{\pm 1\}^{\overline{\mathcal{J}}}}[f(X) \mid \forall j \in \mathcal{J}, X_j = +1] \ge 0.99.$$

Proof sketch. We construct \mathcal{J} by a greedy strategy: Let $f_0 := f$, so $\mathbb{E}[f_0] \ge -0.99$. If $\mathbb{E}[f_0] \ge 0.99$, we are done; otherwise, we know that $\mathbb{E}[f_0] \in (-0.99, +0.99)$. Then $\operatorname{Var}(f_0) = 1 - (\mathbb{E}[f_0])^2 \ge \Omega(1)$. By KKL, there exists an index $j_1 \in [n]$ such that $\operatorname{Inf}_{j_1}(f) \ge \Omega \log n/n$. Now include j_1 in our set \mathcal{J} , and let $f_1 := f_0^{j \mapsto +1}$. Then

$$\mathbb{E}[f_1] \ge \mathbb{E}[f_0] + \operatorname{Inf}_{j_1}(f_0) \ge \mathbb{E}[f_0] + \Omega(\frac{\log n}{n}).$$

Now if $\mathbb{E}[f_1] \ge 0.99$, we stop. Otherwise, we repeat.

This process stops at f_t , where

$$1 \ge \mathbb{E}[f_t] \ge \mathbb{E}[f_0] + \Omega(\frac{t \log n}{n}),$$

so we only need to do this process for $O(n/\log n)$ iterations.

1.4 The FKN theorem

Theorem 1.5 (Friedgut-Kalai-Naor). If $f : \{\pm 1\}^n \to \{\pm 1\}$ has $W^{=1}(f) \ge 1 - \varepsilon$, then f is $O(\varepsilon)$ -close to a dictator/antidictator.

Remark 1.2. Another version of this theorem says that if $W^{\leq 1}(f) \geq 1 - \varepsilon$, then f is $O(\varepsilon)$ -close to a 1-junta.

Proof. We linearize the function f: Let $\ell(x) = f^{-1}(x)$. We may assume without loss of generality that $W^{-1} = 1 - \varepsilon$. Then

$$\mathbb{E}[\ell(X)^2] = \sum_{i=1}^n \widehat{f}(\{i\})^2 = 1 - \varepsilon.$$

Then

$$\ell(x)^{2} = \left(\sum_{i} \widehat{f}(\{i\})x_{i}\right)^{2}$$

= $\sum_{i=1}^{n} \sum_{j=1}^{n} \widehat{f}(\{i\})\widehat{f}(\{j\})x_{i}x_{j}$
= $\sum_{i=1}^{n} \widehat{f}(\{i\})^{2} + 2\sum_{1 \le i < j \le n} \widehat{f}(i)\widehat{f}(j)x_{i}x_{j}.$

We want to bound the variance of $\ell(x)^2$, as it suffices to show that $\operatorname{Var}(\ell(X)^2) \leq O(\varepsilon)$. This is because we would get the lower bound $\sum_{i=1}^n \widehat{f}(\{i\})^4 \geq 1 - O(\varepsilon)$ because

$$1 - O(\varepsilon) \le \left(\sum_{i=1}^{n} \widehat{f}(i)^{2}\right)^{2} = \sum_{i=1}^{n} \widehat{f}(\{i\})^{4} + 2\sum_{i \ne j} \widehat{f}(\{i\})^{2} \widehat{f}(\{j\})^{2}.$$

This implies that

$$\max_{i} \widehat{f}(\{i\})^2 \cdot \sum_{j} \widehat{f}(\{j\})^2 \ge \sum_{i} \widehat{f}(\{i\})^4 \ge 1 - O(\varepsilon).$$

Now we bound the variance. We will use our anticoncentration bound:

$$\mathbb{P}_{X \sim U_n}(|\ell(X)^2 - (1 - \varepsilon)| \ge \frac{1}{2}\sqrt{\operatorname{Var}(\ell^2)}) \ge \frac{(1 - (\frac{1}{2})^2)^2}{9^2} \ge \frac{1}{144}.$$

If $\operatorname{Var}(\ell(X)^2) > 6400\varepsilon$, then

$$\mathbb{P}(|\ell(X)^2 - 1| \ge 39\sqrt{\varepsilon}) \ge \frac{1}{144}.$$

As a consequence, since $|\ell(X)^2 - 1| \ge 39\sqrt{\varepsilon}$ implies $(\ell(X)^2 f(X))^2 \ge 39\sqrt{\varepsilon}$,

$$\mathbb{P}((\ell(X)^2 f(X))^2 \ge 39\sqrt{\varepsilon}) \ge \frac{1}{144} \cdot 169\varepsilon > \varepsilon.$$